This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/authorsrights
A fast and simple numerical model for a deeply buried underground tunnel in heating and cooling applications

Xichen Liua,b, Yimin Xiaoa,*, Kiao Inthavongb, Jiyuan Tub

aCollege of Urban Construction and Environmental Engineering, Chongqing University, No. 83, North Street, Shapingba District, Chongqing 400045, China
bSchool of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia

HIGHLIGHTS

- A high efficient numerical model for underground tunnel ventilation is proposed.
- The model describe the heat transfer and taking into account condensation.
- A set of discrete numerical equations and its solution method is proposed.
- The model greatly simplified computational difficulty and reduce computing time.

ABSTRACT

Underground tunnels used in underground constructions serve as huge ventilation pipes that conduct outside fresh air into a cavern. Predicting the heat and mass transfer is critically important in order to exploit the relatively constant underground soil temperature for heat transfer, and to ensure sufficient ventilation for occupational safety. This paper presents a numerical model developed to describe the simultaneous heat transfer between air and the tunnel surface, taking into account the condensation phenomena inside the tunnel. The soil surrounding the tunnel is treated as an equivalent long annulus and divided into several cross-section slices. With appropriate assumptions, a set of discrete numerical equations and its solution is proposed. The developed model is validated against field measurements which showed good agreement between the simulated results and measurement data. The model is then applied to an underground tunnel operating for a ten-year-period.

1. Introduction

In many underground constructions, tunnels are needed for transportation and access to and from the outer ground surface, while at the same time serves as a huge ventilation pipe to conduct outside fresh air into the underground cavern. This kind of tunnels are often found in underground hydropower stations (Fig. 1) and extend for long distances up to 1000 m and buried deep underground. At a sufficient depth, (typically 4 m or greater\cite{1}) the tunnel takes advantage of relatively constant soil temperature despite the outside seasonal weather changes. This allows both cooling for the underground ground constructions during hot weather, and heating in winter\cite{2}. Its high cooling and heating potential result in a major reduction in energy consumption and initial investment making the transportation tunnel highly beneficial and cost-effective in underground constructions\cite{3–7}. Furthermore it provides the required fresh air to all underground work areas in sufficient amounts to prevent dangerous or harmful accumulation of dusts, fumes, or gases.

This paper focuses on the heat and mass transfer within an underground transportation tunnel. Physically, the energy performance of an underground tunnel is a transient heat conduction–convective problem, influenced by multi-factors. Besides heat transfer to and from the air, condensation of air should also be considered. This developed model can also provide accurate predictions of air parameters at the outlet, including air temperature and relative humidity, which are critical parameters in determining the energy conservation potential of a tunnel.

The energy performance of underground tunnel systems has been investigated through analytical and numerical models. Ben and Kanoun\cite{8} studied the cooling and heating effect of underground heat pipes using a thermal resistance method to evaluate the thermal capacities. Krarti and Kreider\cite{9} used a simplified analytical model which assumed that all variations are periodic
functions of time. However, a limitation of this study is that it does not consider condensation and therefore cannot predict the moisture content of the circulating air. Recently Cucumo et al. [10] proposed an analytical model which considers condensation, but this is realized by using a pre-assumed quadratic profile.

An alternate approach is the discrete numerical model. Based on this, Mihalakakou et al. [11] proposed a model validated with long-term measurements to describe the thermal influence of key variables such as length, diameter and air velocity. Wu and Wang [12] also proposed a numerical model to predict the thermal performance and cooling capacity of underground soil to air systems. Hokoi et al. [13] developed an approximate two dimensional model of an underground rectangular tube to produce a solution nearly equal to that of a three dimensional model. However these models do not consider moisture condensation and latent heat transfer. Su et al. [14] proposed a numerical model which calculated both air temperature and relative humidity, but the mass transfer coefficient is assumed as this is difficult to determine.

In this paper, a simplified and efficient numerical model is proposed, which calculates the air flow temperature, and accounts for condensation. With appropriate simplifications, the discrete numerical equations and computing procedure, is proposed for calculation efficiency and computation time. The results obtained by the model are validated against field measurement data. Finally, the developed model is applied to an underground tunnel system and modeled for a ten-year-period.

2. Mathematical model formulation

2.1. Heat conduction through underground soil

The conduction heat transfer from the tunnel walls through the underground soil is treated as an equivalent long cylinder where its spatial dimensions are defined in cylindrical coordinates (Fig. 2). Taking thin circular cross-section slices of the tunnel and surrounding soil, the general 3D heat conduction equation acting radially through each slice is simplified as a 1D problem in cylindrical coordinates when the following conditions are met:

i) The heat transfer across the thickness, Δz is small in comparison to radial direction, r, therefore the temperature variation in the Δz can also be assumed constant in comparison to the radial temperature variation [3,14]. The variation across r is very large since r reaches a maximum of 10 m.

ii) The temperature distribution along its azimuth or angular coordinate ϕ, is treated as constant, if its variation is very small in comparison to the variation in the radial direction, r of the surrounding soil [15].

iii) Field measurements were obtained at underground tunnels service the Hydropower Stations in China. These tunnels are at an average underground depth of 50 m and 70 m respectively. Therefore the influence of the surface temperature is neglected and the initial soil temperature is considered uniform and without any gradients [9].

The heat conduction occurring radially through each thin soil section is given by

$$\frac{\partial T}{\partial t} = \frac{k}{r} \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r}$$ (1)

where, T is the temperature variation within the soil, [$^\circ$C]; t is time, [s]; k is soil thermal conductivity, [W/m·$^\circ$C]; ρ is soil density, [kg/m3]; C_p is the soil specific heat, [kJ/kg·$^\circ$C] and r is the radius. The air tunnel geometry specifications are 1000-m-long, and $r_{max} = 10$ m, and an optimum value of $\Delta z = 10$ m, which produces 100 thin soil sections. During the numerical solution, the influence of Δz thickness was evaluated, with thickness of 1 m to 10 m and this is discussed in the results. The air tunnel surface has thickness between 0 and 200 mm, which is much smaller when compared with soil radius (10 m). The material is primarily concrete density of 2344 kg/m3, specific heat of 750 [J/kg·$^\circ$C] and thermal conductivity of 1.84 W/m·$^\circ$C which is similar to underground soil. Therefore, the surface produces a low thermal resistance and is neglected in this work. This means that there is a direct interface between air tunnel and the underground soil using a common temperature $T_{surface}$.

2.2. Energy conservation equation of air stream in the air-tunnel

The air stream moving through the tunnel from the inlet to the outlet experiences a variation in temperature and relative humidity as it is heated or cooled within the length of the tunnel. Similarly, the moisture content of air will also change. When warmer air comes into contact with a cooler tunnel surface temperature, sufficiently enough to drop its temperature to dew point, condensation occurs and consequently its moisture content decreases. Another factor to consider is any significant water seepage on the tunnel surface which results in water evaporating from the tunnel surface into air, causing an increase in the air moisture content. However, field measurements and observations showed that the tunnel surface had been treated with anti-seepage technology reducing the moisture evaporation from the tunnel surface into the air. Therefore, evaporation is neglected and only condensation is considered in this paper. This assumption allows further simplifications of the model to obtain a feasible calculation of the underground tunnel system.

Under the assumption of constant air properties on the cross section, the variation in the air properties is considered as a 1D problem along the cross-section thickness, (Δz). The energy conservation equation is written as:

$$m \left(C_{p,air} \frac{\partial T_{air}}{\partial z} + L \frac{\partial w}{\partial z} \right) = \dot{Q}$$ (2)

where m is air flow rate, kg/s; $C_{p,air}$ is specific heat of air, [J/kg·$^\circ$C]; T_{air} is air temperature, [$^\circ$C]; z is the axial coordinate, [m]; L is the latent heat of moisture, [J/kg]; w is the air moisture content; Q is the convection heat transfer rate between air and tunnel surface, [J/s], which is simply defined without condensation as

$$\dot{Q} = hA \left(T_{air} - T_{surf} \right)$$ (3)

T_{surf} is the surface temperature of the tunnel, [$^\circ$C]; A is the heat transfer area, [m2]; h is the convective heat transfer coefficient, [W/m2·$^\circ$C] which is determined from Ref. [16] as

$$h = 0.023 \frac{k_{air} \text{Re}^{0.8} \text{Pr}^a}{D_h}$$ (4)

Author’s personal copy
2.3. Air equations of state

Other thermodynamic properties of the air, including relative humidity and moisture content will be affected by the variation in air temperature. Therefore, the air equations of state are included to define the relationship between temperature, relative humidity and moisture content. When condensation occurs, air will reach a saturated state and its relative humidity will remain constant whereas neglecting condensation the relative humidity will vary with temperature. Therefore, the air equations of state are defined by Eq. (6) based on Su et al. [14].

\[
\begin{align*}
\frac{\partial h_{air}}{\partial T} &= 0 \quad \text{(with condensation)} \\
\frac{\partial h_{air}}{\partial T} &= 0 \quad \text{(without condensation)} \\
\phi_{RH} &= \frac{\mu_{P} \cdot P}{f(T)[0.622 + \mu_{w}]}
\end{align*}
\]

where, \(\phi_{RH}\) is relative humidity; \(T\) is the thermodynamic temperature of air; \(P\) is local atmospheric pressure, Pa. The function \(f(T)\) defines the thermodynamic temperature, which is given as

\[
f(T) = \exp[C_{1}(T)^{-1} + C_{2} + C_{3}T + C_{4}(T)^{-1} + C_{5}(T)^{-1}] + C_{6}\ln(T) \]

where, \(C_{1} = -5800.2206, C_{2} = 1.3914993, C_{3} = -0.04860239, C_{4} = 0.41764768 \times 10^{-4}, C_{5} = -0.14452093 \times 10^{-3}, C_{6} = 6.5459673.\)

2.4. Boundary conditions

The heat transfer between the air and tunnel surface is described by the convection heat transfer equation. The corresponding boundary condition is given by Eq. (8)

\[
\dot{Q} = -k \left(\frac{\partial T}{\partial r} \right)_{\text{surface}} \]

where the subscript surface represents the air tunnel surface and soil interface; \(\frac{\partial T}{\partial r}\) is the temperature gradient at rock-tunnel surface interface, \(1/C\).

Under real applications, periodic variation of the air temperature arises from seasonal change in the environment (Fig. 3). This results in variations in the heat transfer between the circulating air and underground soil but this effect is limited to a certain distance found to be \(\approx 10\) m from the tunnel surface [9]. Radial distances greater than 10 m away from the tunnel surface remain constant. Therefore, this distance is considered as an external boundary and treated as constant temperature condition as

\[
T(r) = C \quad \text{for} \quad r = 10 \text{ m}
\]

For air properties at the tunnel inlet, values are obtained from field measurement and local weather database. Field tests were carried out to provide both boundary condition values and validation data for the results of the proposed numerical model. Two field measurements were undertaken at different locations and labeled as Tunnel A and Tunnel B, both of which are transportation tunnels in an underground hydropower station (details are given in Table 1). Tunnel A is located at 2100 m above sea level, which causes the local average atmospheric pressure to be 83.76 kPa. While tunnel B is located at 43.9 m above sea level giving a local
average atmospheric pressure of 101.86 kPa. Tunnel A is shorter at 310 m in length while Tunnel B is a longer at 1104 m, and both have a sufficient average depth to ensure the soil around the tunnel will not be affected by any ground surface temperature fluctuation. The internal surface of the two tunnels was found to be dry with negligible water seepage, which satisfies Eq. (6).

For Tunnel A, air temperature and relative humidity were measured while for Tunnel B, inlet air temperature and relative humidity were measured, and only air temperature was measured for the inside cross sections. The specific position (z) of each measured cross section for Tunnel A are: 30, 60, 90, 120, 150, 180, 210, 230, 260 and 310 m and; for Tunnel B: 30, 60, 90, 170, 340, 510, 680, 850, 990 and 1000 m. The air temperature and relative humidity were recorded by automatic data loggers while air velocity was measured by a thermal anemometer manually.

3. Discretized equations

The underground air tunnel geometry is discretized into a computational domain through uniformly distributed nodes in both the radial and axial coordinate (Fig. 4). Nodes in the radial coordinate have an interval of Δr and are limited to the soil domain. The nodes are labeled from i = 1 to n where i = 1 is the external soil boundary, and i = n is the air tunnel surface. Nodes in the axial coordinate have an interval of Δz and are limited to the air tunnel domain. The nodes represent cross-section slices depicted in Fig. 2 and are labeled from j = 1 to m where j = 1 is the inlet cross-section and j = m is the outlet cross-section.

3.1. Nodes in underground soil

The differential equations (Eqs. (1)–(8)) are discretized using the finite difference method. Using a time step of Δt, and applying the central difference scheme Eq. (1) becomes

\[
T_{t+1}^{i} = (M + N)T_{t}^{i} + (1 - 2M)T_{t}^{i+1} + (M - N)T_{t+1}^{i} \quad (\text{for } i = 2 \text{ to } i = n - 1)
\]

where

\[
M = \frac{k\Delta z}{\rho C_{p} \Delta r \Delta z N}, \quad N = \frac{k\Delta z}{\rho C_{p} \Delta r \Delta z N}.
\]

3.2. Nodes in air-tunnel

In the air tunnel it is assumed that the variation of the air properties is caused by the heat transfer from the preceding cross-section slice (j – 1) and therefore, the heat transfer occurs sequentially through each cross-section slice.

If there is condensation in the previous slice the relative humidity remains constant in the subsequent slice while the moisture content decreases. For the no-condensation case the relative humidity changes with temperature and the moisture content is constant. According to Eqs. (2) and (6), the air parameters in the subsequent cell is obtained by

\[
\begin{align*}
T_{t+1}^{air,j+1} & = T_{t}^{air,j} + \frac{1}{\rho C_{p}} \left(u_{w}^{j+1} - u_{w}^{j} \right) + \frac{k\Delta z}{\rho C_{p} \Delta r \Delta z N} Q + T_{t}^{air,j} \\
\phi_{RH}^{j+1} & = \phi_{RH}^{j} \quad (\text{with condensation}) \\
u_{w}^{j+1} & = u_{w}^{j} \quad (\text{without condensation}) \\
\phi_{RH}^{j+1} & = \frac{u_{w}^{j+1} \delta}{(1 / C_{16}) \left(0.622 - u_{w}^{j+1} / C_{16} \right)}
\end{align*}
\]

where Q is:

\[
\begin{align*}
\dot{Q} & = h_{c}\left(T_{t+1}^{air,j} - T_{t}^{air,j} \right) \quad (\text{without condensation}) \\
\dot{Q} & = h_{c}\left(T_{t+1}^{air,j} - T_{surf}^{air,j} \right) \quad (\text{with condensation})
\end{align*}
\]

3.3. Boundary nodes

The boundary condition for i = n is obtained from Eq. (8), which gives:

\[
T_{t}^{n+1} = E\dot{Q} + (1 - E - F)T_{t}^{n} + EF T_{t-1}^{n-1} \tag{12}
\]

where \(E = \frac{\Delta t}{\Delta t \Delta r / \Delta z / \rho C_{p} k} \), \(F = 2\pi \left(\frac{\Delta z}{\Delta r} \right)^{2} \). \(\dot{Q} \) is obtained from Eq. (11).

The far external soil boundary at i = 1 is treated as a constant temperature defined as

\[
T_{t}^{1+1} = T_{0} \tag{13}
\]

where \(T_{0} \) is the initial deep underground temperature, °C.

The inlet boundary conditions for the air tunnel section is defined according to measured or the local weather data. This means that the air properties in the first cross-section j = 1 cell are considered as known values, defined as.

Table 1: Details of measured tunnel.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tunnel A</td>
</tr>
<tr>
<td>Length (m)</td>
<td>310</td>
</tr>
<tr>
<td>Average depth (m)</td>
<td>50</td>
</tr>
<tr>
<td>Local atmospheric pressure (kPa)</td>
<td>83.76</td>
</tr>
<tr>
<td>Diameter (m)</td>
<td>6.8</td>
</tr>
<tr>
<td>Soil thermal conductivity (W/[m K])</td>
<td>2.8</td>
</tr>
<tr>
<td>Soil specific heat ([kJ/kg K])</td>
<td>900</td>
</tr>
<tr>
<td>Soil density (kg/m^3)</td>
<td>3080</td>
</tr>
<tr>
<td>Air flow rate (m^3/s)</td>
<td>72</td>
</tr>
<tr>
<td>Internal surface situation</td>
<td>Dry</td>
</tr>
<tr>
<td>Annual average air temperature (°C)</td>
<td>16.9</td>
</tr>
<tr>
<td>Testing time</td>
<td>July 16–July 21</td>
</tr>
</tbody>
</table>
3.5. Underground soil temperature initialization

The initial soil temperature distribution has a great influence on the calculated results due to the climatic temperature variation of the outer air impacting entering the tunnel inlet, and also the convection heat transfer through the air tunnel and conduction through the soil. Therefore, it is not possible to accurately determine the initial rock temperature distribution. In order to setup the initial temperature distribution to replicate the field measurements, the follow method is used. For long term calculations, the influence of the initial conditions are negligible if the start-up effect of unsteady modeling is allowed to dissipate over the long period of time. Therefore the soil temperature is initially set to a uniform value, based on the local annual average air temperature and allowed to reach equilibrium over time. The inlet air properties obtained from local weather database are used to run the calculations for a period of six-months to allow the non-uniform soil temperature distribution to be obtained. After this period, the measurement data is used to validate the numerical model.

4. Validation of numerical models

First the grid independence validation was carried out, two models with different mesh density were tested. The mesh setting for model 1 is: \(\Delta r = 0.05 \text{ m}; \Delta z = 10 \text{ m}; \Delta t = 300 \text{ s} \). For model 2, the setting is: \(\Delta r = 0.01 \text{ m}; \Delta z = 1 \text{ m}; \Delta t = 50 \text{ s} \). The hourly outlet temperature and humidity values between the two simulations were different by \(1.6 \times 10^{-4} \text{ C} \) and \(0.008\% \), respectively. Model 1 was found to be sufficient, to reduce computation size and calculation time. Therefore, all mesh settings in this paper are that of model 1.

4.1. Tunnel A

In Tunnel A, the air temperature and relative humidity at a cross-section near the tunnel outlet \(z = 260 \text{ m} \) \((z/L = 0.84) \) are

\[
\begin{align*}
T_{\text{air}1}^t &= T_{\text{air}}(t) \\
\phi_{\text{RH}1}^t &= \phi_{\text{RH}}(t)
\end{align*}
\]

where \(T_{\text{air}}(t) \) and \(\phi_{\text{RH}}(t) \) are the hourly temperature and relative humidity values based on the measured and local weather data.

\[T_{\text{air}1}^t = T_{\text{air}}(t), \quad \phi_{\text{RH}1}^t = \phi_{\text{RH}}(t) \quad (14) \]

\(T_{\text{air}}(t) \) and \(\phi_{\text{RH}}(t) \) are the hourly temperature and relative humidity values based on the measured and local weather data.

Fig. 5. Computation procedure. The spatial discretization are \(\Delta r = 0.05 \text{ m}, \Delta z = 10 \text{ m} \) with time steps of \(\Delta t = 300 \text{ s} \).

Fig. 6. Comparison of air properties at \(z = 260 \text{ m} \) \((z/L = 0.84) \) cross section (a) average cross-section temperature (b) average cross-section relative humidity.
results indicate that the air fluctuation reduces with tunnel distance from the inlet and that both heating and cooling occur. The field measurements were undertaken during the summer season, and during day time, the inlet air temperature is higher than that of the tunnel surface. Heat is transferred from the air to soil and stored in the soil causing an increase in the underground soil temperature. During night time, the air stream is heated because of the low inlet temperature at night. The heat in the soil is released back into the air. Therefore, the heat transfer between air and soil is a dynamic cyclic process.

During measurements, ventilation at the experimental site ceased during the period \(t = 81 - 91 \) h in field measurement shown in Fig. 8, which influences the comparisons between the numerical result and the field measurement. Besides this, the simulated values fit the measured values well. The maximum calculation error is 2.18 °C, and average calculation error is 0.34 °C.

Fig. 9a and b are the temperature comparison along the axial direction, \(\Delta z \), at 14:00 in Aug 30th and 4:00 in Sep 1st. Fig. 9a shows that the air is being cooled and the measured temperature drop from inlet to outlet is 8.5 °C, while the numerical model predicted a value of 7.7 °C. During night time shown in Fig. 9b, the air is heated with measured and simulated temperature increase of 2.28 °C and

In Tunnel B, the air temperature at \(z = 30 \) m (\(z/L = 0.027 \)), \(510 \) m (\(z/L = 0.46 \)) and \(1000 \) m (\(z/L = 0.91 \)) are compared in Fig. 8. The

4.2. Tunnel B

In Tunnel B, the air temperature at \(z = 30 \) m (\(z/L = 0.027 \)), \(510 \) m (\(z/L = 0.46 \)) and \(1000 \) m (\(z/L = 0.91 \)) are compared in Fig. 8. The

Fig. 7. Comparison of air temperature and relative humidity along the tunnel.

Fig. 8. Comparison of air temperature at different cross sections at \(z = 30 \) (\(z/L = 0.027 \)), \(z = 510 \) m (\(z/L = 0.46 \)) and \(z = 1000 \) m (\(z/L = 0.91 \)).
2.33 °C respectively. The calculated values are in good agreement with the measured values, which indicate that the numerical model can accurately calculate the dynamic heat transfer process.

5. Case study

A case study is presented to highlight the applicability of the proposed numerical model. A deeply buried underground tunnel with a length of 1000 m having soil properties of thermal conductivity \(k = 2\ \text{W/(m K)}\); specific heat \(C_p = 950\ \text{J/(kg K)}\) and density \(\rho = 2500\ \text{kg/m}^3\) is used. The radius of the equivalent cylinder tunnel is 4 m and the air stream velocity is 1 m/s. The hourly inlet air properties are based on local weather database gathered in the city of Chongqing, China and the initial calculation date is started at Jan 1st. The initial temperature of the rock is assumed to be uniformly distributed with an averaged local underground soil temperature. The influence of the initial boundary conditions is shown in Fig. 10, where the outlet temperature value taken for the first year of simulation results is compared with the second year of results. The results show that a temperature variation occurs in the first six months of the first simulation year which is caused by the initial uniform soil temperature distribution causing the associated start-up effect that occurs for any time-dependent simulation. After the six months, the soil temperature distribution is established and the outlet temperature between any two consecutive years shows a negligible value.

Fig. 11 is the inlet and outlet air temperature value in the 10th year, which shows that the air stream is cooled in summer, but there is a small amount of time in the night that the air stream is heated. The opposite phenomenon occurs in winter. During a whole year of simulation time, the average and maximum temperature drop of air stream in summer is 2.35 °C and 8.93 °C, respectively, while the average and maximum temperature increase in the air stream is 2.13 °C and 6.27 °C respectively in winter for heating condition.

6. Conclusion

(1) A simplified numerical model is developed for ventilation of transportation tunnels in underground hydropower stations, which takes into account both temperature and condensation. This model, avoids the introduction of a mass transfer coefficient which greatly simplifies the computational difficulty and reduces computational time.

(2) Besides an underground hydropower station, this model can also be used in deeply buried tunnels of any underground constructions, particularly those serving heat exchange piping networks. This model is also suitable for any deeply buried earth–air–pipe systems, where axial distance between pipes is large enough to avoid thermal interference.

(3) The discrete numerical equations and computing procedure are given in detail, can quickly solve the heat and mass transfer problem and greatly improve the computational efficiency. For instance, the computational time of a tunnel with 1000 m long for one-year-period simulation is only 6 min based on today's personal computer. Therefore this model is highly suited for industry use.

(4) Field measurements were carried out to validate the simulation result of a simplified model. For Tunnel A, the maximum deviation of air temperature and relative humidity is 1.19 °C and 8.22%, respectively. Meanwhile, the model can accurately calculate the condensation phenomenon. For Tunnel B, the maximum deviation of the calculation result at different cross-section is 2.18 °C, and average deviation is 0.34 °C.

(5) The simplified model is also used to carry out a ten-year simulation period. The result shows that the impact of initial rock temperature will disappear after a half year of simulation. The air stream is mainly cooled in summer and heated in winter, and the average temperature drop in summer and temperature rise in winter is 2.35 °C and 2.13 °C, respectively.

Acknowledgements

The work presented in this paper is financially supported by National Nature Science Foundation of China (Project No. 51778482), Fundamental Research Funds for the Central Universities (Project No. CDJZR11 2100 04) and China Scholarship Council (CSC: 201206050089).

References

